.com Solutions Inc.

a

FmPro Migrator - BASIC to
LiveCode Conversion
Procedure

FmPro Migrator - BASIC to LiveCode Conversion Procedure

1

BASIC to LiveCode Conversion

1.1 Introduction - BASIC to LiveCode Conversion
1.2 Step 1 - Create FmPro Migrator Project File
1.3 Step 2 - Select Conversion Options & Convert BASIC Files

VB6 to LiveCode Conversion

21 VB6 to LiveCode - Form and Script Conversion

18

BASIC to LiveCode
Conversion

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 3

Introduction - BASIC to LiveCode Conversion

This document provides an explanation of the steps required to convert BASIC scripts to LiveCode
scripts using FmPro Migrator Platinum Edition.

This document also includes VB6 to LiveCode conversion info, showing how to convert the VB6
frm files and .bas script files into LiveCode stacks.

Revision 03
9/7/2013
[Updated LiveCode graphics screenshots.]

About the BASIC to LiveCode Conversion Process

The BASIC to LiveCode conversion process is designed to convert all of the BASIC files within a
source directory, including all subdirectories. FmPro Migrator is designed to read BASIC files
having a variety of file extensions (including: bas, vba, vbs or txt) during the conversion process.

Each file within the source directory is read into memory and analyzed on a line by line basis.
Keywords and operators are read and converted to the equivalent keywords and operators in
LiveCode.

BASIC Code Processing Features

1) Traversal of the files and subdirectories of the selected source directory. Re-creation of the
same file and directory structure within the selected destination directory. Quickly convert all of the
.bas files within the source directory and subdirectories.

2) Processing of .bas, .vba, .vbs and .ixt source files, including support for Visual Basic,
PowerBasic, ZBASIC/FutureBasic, RealBasic, VBScript and VisualBasic for Applications code.

3) High performance processing. Process hundreds of files and hundreds of thousands of lines of
code in seconds.

4) Code indenting is maintained for most situations. The exception is CASE statements where
additional Default statements get added.

5) Line continuation characters are removed, as part of the code parsing process.

6) Compiler directives starting with "$" are commented out.

7) DIM/STATIC commands are converted into local/global variable definitions in LiveCode, in
which the "As <VariableType>" definitions are removed and the static memory quantity is also
removed, since itisn't needed in LiveCode. For instance the statement

DIM ParameterData2$(3750)

gets changed to

local ParameterData2

8) BASIC variable suffix characters (%, $) are removed from most instructions.

9) Each variable definition is checked to insure that it does't exactly match an existing LiveCode

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 4

keyword. If a conflict exists between a variable name and an existing keyword, then an underscore
character is added to the variable name.

10) Variable assignments are converted into LiveCode "put" commands. Colon or single quote
comment operators following the assignment on the same line will be commented using the "--"
LiveCode operator and placed to the right side of the assignment statement. Variable suffixes will
be removed and the variable names checked against the LiveCode keywords list on the left side of
the assignment operator.

11) Private Sub definitions are converted into LiveCode private command handlers with the "end
sub" replaced with "end <command name>".

12) Public Sub definitions are converted into LiveCode private command handlers with the "end
sub" replaced with "end <command name>".

13) OPEN/INPUT/CLOSE commands using file numbers (#1, #2 etc.) are partially converted into
LiveCode open/read/close file commands. Manual changes will be required in order to specify
14) The BASIC For loop keyword is converted into a "repeat with" keyword in LiveCode. The For
loop variable is fully checked for LiveCode keyword conflicts and BASIC variable suffix characters
are removed. BASIC variable suffix characters are removed from the remaining variables.

15) BASIC code labels ending with a colon are commented out.

16) ON Error statements are commented out, along with GOTO commands. Error checking can be
rewritten using Try/Catch statements in LiveCode.

17) Passing parameters by reference using the ByVal keyword are converted into the @ reference
passing character used in LiveCode.

18) Functions having optional arguments specified with the Optional keyword will have this
optional keyword removed. If default values are needed for the parameters, these should be
defined manually within the function.

19) SELECT CASE statements are converted into LiveCode SWITCH statements. Each CASE
statement is closed with a break statement. CASE ELSE statements are converted into "default"
statements.

20) The DO WHILE/DO UNTIL keywords are converted into a "repeat while/until" statements, with
the closing LOOP keyword converted into an "end repeat" statement. The LOOP keyword is
processed ifitis the last word of an instruction containing other keywords and ifitis on a line by
itself.

21) The LET keyword is removed and the instruction is processed as a standard assignment
statement.

22) The LONG IF keyword is processed the same as a regular IF keyword. (ZBASIC/FutureBasic).
23) SLEEP <interval> is converted into "wait <interval> milliseconds with messages".

24) Function return parameters specifying the function name will be replaced with the LiveCode
return keyword.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 5

BASIC Omitted Functions and Keywords

Some Basic functions are purposely omitted from the conversion processing because they require
manual work:

1) Instr(variable1, ".") -> offset(".", variable1] - The string to find and string to search parameter
positions need to be swapped manually when converting to LiveCode.

2) Basic "+" operators can be used to represent either a mathematical operation or string
concatenation.

3) bin$() -> binaryEncode() - The LiveCode formatting needs to be manually applied to the data to
be converted into binary. (ZBASIC/FutureBasic)

4) box, circle, button -> Create an object using the appropriate style of specified object.
(ZBASIC/FutureBasic)

5) hex$() -> binaryDecode() - The LiveCode formatting needs to be manually applied to the data to
be converted into hex. (ZBASIC/FutureBasic)

6) kill path$ -> delete file <filepath> (ZBASIC/FutureBasic)

7) WAITKEYS - There isn't an equivalent command to wait for keystrokes entered via the command
line, which is how commands like INPUT$ and WAITKEY$ are used. LiveCode is eventdriven, so
messages such as entering keystrokes within fields, and tabbing between fields can be captured
and used to trigger code to run at the appropriate time.

Unsupported Features Requiring Manual Conversion

1) Poorly formed BASIC code will not get fully processed. For instance, keywords, operators and
variables should generally be separated from each other by at least one space character.

2) One instruction per line can be parsed correctly. The additional instructions of BASIC code on
the same line won't be completely converted. However commented code to the right of variable
assignment statements will be commented appropriately.

3) Operating system specific or BASIC language specific functions won't be converted.

4) BASIC external libraries or calls to installed .dll files.

5) Syntax errors or other types of problems which prevent the BASIC code from executing won't be
corrected.

6) BASIC object oriented code features won't be converted, but will remain in the converted code
for reference purposes. For instance Button1.Caption won't be converted into "the name of button
Button1". This is due to the difficulty of determining the type of object referenced in the original
code (button, field, window etc.). Note: This dot notation conversion is done automatically for VB6
projects. See the VB6 chapter of this manual for more details.

7) Multiple variable assignments within the same instruction. These statements need to be
separated into two separate instructions.

8) Automated conversion of twips to pixel coordinates between Visual Basic and LiveCode is not
implemented. There are 1440 twips per inch and approximately 15 twips per pixel (depending
upon screen resolution). LiveCode uses pixel based coordinates when defining object locations.
Note: Twips to Pixel conversion is done for VB6 conversion projects. See the VB6 chapter of this
manual for more details.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 6

9) BASIC On Error Goto ErrorHandler code remains unconverted.

10) The use of # characters in place of double quotes for enclosing date values being assigned to
a variable.

11) Removal of Visual Basic object type names during the conversion of object variable DIM
statements. This limitation also applies to user defined data types.

12) IsEmpty(), Null and Error value implementations. There is too much chance of error if doing
this type of conversion using a simple text replacement algorithm. But if an assignment statement
is found to contain the text "Nothing" it is replaced with "empty" for compatibility with LiveCode.
13) ReDim statements are commented out, because they could either be used to clear an array or
resize the array. The actual usage needs to be determined manually.

14) Visual Basic code using Collections.

15) Passing of named parameters to functions or handlers is not supported in LiveCode, and
needs to be changed manually in the source code.

16) ELSEIF statements should be manually converted into SWITCH/CASE statements if there are
more than 2 conditions being checked. This change will also make the code easier to read,
understand and troubleshoot.

17) The DO WHILE/DO UNTIL statements are converted if both keywords are on the same line
with each other. If the DO keyword is separated from the WHILE/UNTIL keyword then it won't be
converted.

18) Very few recorded VBA Macro statements will be directly converted due to the reliance upon
application-specific objects, properties and methods. Most of these features will only available
within the original Microsoft application.

19) Array references will be converted from parenthesis () to square brackets [] on the left hand
side of the assignment operator. This change won't occur for array references on the right hand
side.

20) WITH/END WITH keywords are not applicable in LiveCode, so they are commented out.

21) The RealBasic CountFields/CountFieldsB() function should be manually replaced with setting
the itemDelimiter to the field delimiter and then getting the count of the number of items in the
container.

22) The ZBASIC/FutureBasic cursor cursorlID is converted into "set the cursor to" but it will be
necessary to change the constants to the appropriate values used in LiveCode (watch, arrow etc).
23) The DELAY command is converted into "wait for". If you want to specify "with messages" then
this text should be added manually along with a unit of time. (ZBASIC/FutureBasic).

24) PRINT and STDOUT keywords are converted into LiveCode "put" statements, which will by
default send the output to the message box during development. This is probably not what you
want with a modern application. Further work should be done to analyze how this info should be
presented to the user within the context of an event driven development process.

25) PowerBasic Embedded x86 assembler in-line code which starts with a "!" character will be
commented out, since this is not applicable to LiveCode development.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 7

Step 1 - Create FmPro Migrator Project File

In order to perform a migration project, FmPro Migrator needs to create a MigrationProcess.db3
project file to store information about the migration project. Code conversion projects work a little

differently than database conversion projects, so the Create Project File... menu is used to get the
process started.

Open FmPro Migrator

Click the FileMaker tab to select an output directory.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 8

Click FileMaker Tab

Click the Browse button to select the directory which will be used to store the FmPro Migrator
project file. This directory can be the same output directory used for generating the converted
scripts or stack file or it can be a different directory.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 9

Select Create Project File... Menu

Display Tips 8T
Continue Migration...
Create Project File...

Select the Create Project File... item from the File menu. As soon as the FmPro Migrator project file
has been created, the Migration Process window will open.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 10

Click GUI Tab of Migration Process Window

Relationships | TOs | Value Lists | CFs | Layouts | Scripts§l

Step 2: n
Import Layouts from
FileMaker Advanced
database(s).

Click the Layouts
tab, click the Layout
Batch Import button.

Step 3:
Click the Scripts tab.

Select all of the
ScriptMaker Scripts
within FileMaker
Advanced, copy to
clipboard.

Click the Add Scripts .
button to copy the v Get

scripts from the = Relationships
| Not Started

<

Remap Objects Create CFs, Tables, Create Value Lists, Create Data
Table Occurrences Scripts and Layouts Import Scripts
Not Started Not Started Not Started Not Started

Since a database migration is not being done, ignore the contents of the various database
migration features, and click on the GUI tab button.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 11

Step 2 - Select Conversion Options & Convert BASIC Files

Click BASIC to LiveCode Button

ue Lists | CFs | Layouts | Scripts

Tables | Relationships | TOs | Val

Convert Layouts
to HTML:

Click the Convert
Layouts to HTML Q
button to convert

each FileMaker Pro Convert Layouts
layoutinto an HTML to HTML

file. Each file

includes fields, text

labels, images,

graphic objects and

JavaScript code for

implementing portals

and pop-up calendar

pickers.

Export Layout XML: Access to FmPro FmPro to Access
Click the Export Migration Migration
Layouts as XML

button to export the

layout definition XML

for all layouts as text

files. Each layoutis

exported as a text file

within a folder
named LiveCode Visual FoxPro

Layout XML_Files Conversion Conversion
within the output
directory.

Access to FmPro

(1) Select the BASIC to LiveCode option from the menu, then (2) Click the BASIC to LiveCode
button to open the BASIC to LiveCode window.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 12

BASIC to LiveCode Options

Desktop, Mobile, Server
Convert BASIC

Scripts to LiveCode:

Step 1) Select the [1

source directory

containing the I O

BASIC scripts.
()
Step 2) Select the o [wev 3]

types of source files

to process (the (5)" order License Key

defaultis .bas).

Step 3) Selectthe
output directory
where the .irev files
or LiveCode stack
will be written.
Note: FmPro
Migrator will
overwrite existing
files and directories.

There are several options which need to be set prior to performing a code conversion project:
1) Source File Type(s): bas, vba, vbs or txt.

2) Source Directory - This is the top-level directory containing your BASIC scripts. All enclosed
directories will be traversed and files within those directories will also be processed.

3) Destination Directory - This is the output directory where the converted files will be written.

4) Output File Type - The BASIC files can be converted into .irev files or a single LiveCode stack
having a card representing each converted source file.

5) By default, the BASIC to LiveCode process operates in Demo mode. In Demo mode, 5 files of
unlimited length will be processed. Ordering a license key removes this limitation.

6) Click the Convert button to convert the BASIC files.

Note: The VB6 Conversion process is explained in a separate section of this manual.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 13

Conversion Results

Desktop, Mobile, Server
Convert BASIC

Scripts to LiveCode:

Step 1) Selecthe

source directory

containing the /Users/dsimpson/fmpro_migrator/!

BASIC scripts.

/Users/dsimpson/Desktop/BASIC_To

Step 2) Select the
types of source files
to process (the
defaultis .bas).

Step 3) Selectthe
output directory
where the .irev files
or LiveCode stack
will be written.
Note: FmPro
Migrator will
overwrite existing
files and directories.

After clicking the Convert button, FmPro Migrator converts each of the files and displays the
conversion results.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 14

.irev Converted Files

¥ PLACES ame
Desktop v - Hello ~
s Applications # Hello.irev
Developer ' MigrationProcess.db3
= ¥ [Parse
xuments % Pparsel.irev
o ritures) Parse.irev
B Movies ¥ [Thread
¥ SEARCH FOR /% Thread.irev
(L) Today v @@ Tword
(L) Yesterday % Tword.irev
(L) Past Week v @ util
(& Al Images @ ANSI2ASC.irev
(& All Movies ® ASC2ANSL.irev
(& All Documents ¥ CC.irev
@] Eject.irev
#) FileFind.irev
W FileVer.irev
/% KbCode.irev
@ LC.irev
/% LF2CRLF.irev
W MaxWidth.irev
/% PBSort.irev
% ScanPath.irev r
/% WinErr.irev v
| Yal»

The generated .irev files shown in the output directory. When generating .irev files, the <?rev tags
are added to each file since each line of the file is considered executable code.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 15

BASIC Converted.rev Stack with Converted Card Scripts

oo O

card "Parse_Parse2" of stack "/Users/dsimpson/Desktop/bl/Basic Converted.rev" - Script Editor (editing)

Compile) 4 & P (Handler list Q

@ card "Parse_Parse2" ® @
11 #COMPILE CON -
12
L et e L L et e DL L L L e e e L L Lt
14 -- Main program entry point...
N --
16 FUNCTION PBMAIN
17

18 LOCAL ix
19 LOCAL [File
20 LOCAL sFile
21 LOCAL sArr
22 LOCAL sData

| &
24 write to file "Demonstration of the new FILESCAN and LINE INPUT# statements”
25 put & return
26
27 -- NextFile --
28
29 put “Enter the name of a text file to open and read into an array:" return

| 30 LINE INPUT sFile

(S XeXe) Application Browser

Name [Num | | ENNIEE Control & s

| Internet_CGI_Mailer 21 r DT>)
{23 Internet_cGI_PBCGl 22
| Internet_TCP_EchoServ 23
L2 Internet_TCP_EClient 24
L3 Internet_TCP_Whols 25
| Internet_UDP_UDPCInt 26
23 Internet_UDP_UDPSrvr 27
*_'l Parse_Parsel 28
L2 parse_parse2 29
| Thread_Thread 30
T | TWord_Tword 31
123 util_ANsI2AsC 32
L2 util_AsC2ANSI 33 v
L util_ce 4

&E - D <l»

44 Cards 0 Controls

If the stack outputfile type is selected, a stack named BASIC Converted.rev will be created within
the output directory. Each BASIC script is converted into a card having a name consisting of the
subdirectory name and script name. Select any card in the Rev Application Browser and
right-click on the card to select the Edit Script contextual menu item. The script will be opened in
the LiveCode editor.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 16

VB6 to LiveCode Conversion

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 17

VB6 to LiveCode - Form and Script Conversion

This chapter of the manual covers the process for converting VB6 projects into LiveCode stacks.
Each .FRM form file in the Visual Basic 6 projectis converted into a card within a LiveCode stack
file, and each .bas code file is converted into a .irev text file containing LiveCode code.

Open BASIC to LiveCode Conversion Window

Desktop, Mobile, Server
Convert BASIC

Scripts to LiveCode:

Step 1) Selecthe

source directory

containing the /Users/dsimpson/fmpro_migrator/

BASIC scripts.
"
Step 2) Select he ST

types of source files
to process (the
defaultis .bas). —

Step 3) Select the
output directory
where the .irev files
or LiveCode stack
will be written.
Note: FmPro
Migrator will
overwrite existing
files and directories.

Once the BASIC to LiveCode Conversion window has been opened, click on the VB6 Conversion
button. Clicking this button will save either the Demo version (Demo mode), or Production version
(Licensed mode) of the VB6ToLiveCode conversion stack file.

The Demo version of the VB6ToLiveCode Conversion stack converts up to 5 forms and 5 .bas
script files. Once the license key has been entered for the BASIC to LiveCode Conversion feature,
the production version of the stack will be saved to the output directory when clicking the VB6
Conversion button (as shown above). The VB6toLiveCode Production stack provides unlimited
processing capabilities.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 18

Saving the VB6ToLiveCode Conversion Stack

The VB6ToLiveCode Conversion stack has been written to the
output directory as:
/Users/dsimpson/Desktop/Assets6_Fmig//VB6ToLiveCode08

Production.livecode

The VB6ToLiveCode Conversion stack file will be saved to the previously selected FmPro Migrator
output directory.

Using The VB6ToLiveCode Conversion Stack

vBe wp LIVE(€EL

Desktop, Mobile, Web, Server

Convert VB6 Forms
and Scripts to
LiveCode:

Step 1) Selectthe
source directory
containing the VB6
project.

Step 2) Selectthe
output directory
where the LiveCode
stack will be created.

Note: Existing files
and directories will
be overwritten.

Step 3) Press the
Convert button.

The VB6 to
LiveCode stack will

(1) Select a source directory containing the VB6 projectfiles, (2) select an destination directory for
the converted files, (3) click the Convert button.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 19

VB6 Conversion Results

vBe wp LIVE(€EL

Desktop, Mobile, Web, Server

honvert VB6 Forms
and Scripts to
LiveCode:

Step 1) Selectthe

source directory /Users /dsimpson/fmpro_migratc

containing the VB6

project. /Users/dsimpson/fmpro_migratc

Step 2) Select the
output directory
where the LiveCode
stack will be created.

Note: Existing files
and directories will
be overwritten.

Step 3) Press the
Convert button.

The VB6 to

LiveCode stack will i

Once the processing has been completed, the results will be displayed, and the new VB6
Converted.livecode stack will be saved into the Destination Directory and left open in the
LiveCode IDE in front of the VB6ToLiveCode Conversion stack.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 20

Locked Stack Error

® O O button "VB6ToLC_conversion_btn" of card "VB6ToLiveCodel" of stack "/Users/dsimpson/Desktop/Assets6_Fmig/VB6ToL...

Apply ” [l 2 (Handler list | :] J
© button "VB6ToLC_conversion... ® @)
1 |
2 \
4
5
10 0 The script of this object is password protected,
11 please enter the password to continue.
12
13 (" Unlock)
2 | SEE—
H 14
il
16
17
18
19
20
21
24
B3 Find: | xml Next§ Previousff [] MatchC
Errors Variables Documentation Breakpoints Search Results

& Noerrors occurred

The VB6ToLiveCode Conversion stack is a locked stack, so that you won't be able to open any of
its scripts within the LiveCode IDE.

Unlike the rest of the FmPro Migrator application, the VB6ToLiveCode Conversion stack is
implemented as a stack file which runs directly in the LiveCode IDE. The VB6 Conversion feature
is implemented as a stack in order to allow it to insert converted scripts of unlimited length into
objects on the converted cards.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 21

Converted Form: SCICALC

O Application Browser
Name | Num | & Q |71 Layer | Control g —
1 RECURSE 116 0 r v v 22 BSButton 19
4 Registry 142 60 v CalculateButton
RepForm 183 0 v CLRButton
RTBox 95 224 v 35 Commandl @ 14
1 RTFDemo 94 4 v 26 Command2 4
“ RTMenu 42 0 v DelButton
=1 Rubber 63 24
=1 sCICALC 187 16 v v Framel_rect 0
“ scicaLcp 188 12 S v v 49 Frame2_grp 0
“1 SCICALRE 189 7 O v v so Frame2_rect 0
4 Script 190 44 L @ v v 8 Frame3_grp 0
¢ e { : Frame3_rect 0
FunctionButton 5
FunctionButton 0
FunctionButton 0
FunctionButton 0
X Value FunctionButton 0
FunctionButton 0
Calculate | [N FunctionButton 0
FunctionButton 0
o Yo e i
e e dpiiieini
@ @ @ ,\ﬁ A ’E\’mT i FunctionButton 0
o (Nt Pk I ekl Label2 0
OO = | GamGan) Gan) ? Label3 0
LogBttn 13 ~
y {\d.emoryrinus 3
VA

This screenshot of the SCICALC.FRM VB6 form shows (1) the converted form, and the (2) objects
with script counts in the LiveCode Application Browser.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 22

DelButton - Original VB6 Code

Private Sub DelButton_Click()
If Len(Textl.Text) = @ Then
Textl.SetFocus
Exit Sub
End If
If Len(Textl.SelText) > 1 Then
Textl.SelText = ""
Textl.SetFocus
Exit Sub
End If
If Textl.SelStart = Len(Textl.Text) Then
Textl.SetFocus
Exit Sub
End If
SStart = Textl.SelStart
Textl.Text = Left$(Textl.Text, Textl.SelStart) + Right$(Textl.Text, Len(Textl.Text) - Textl.SelStart - 1)
Textl.SetFocus
Textl.SelStart = SStart
End Sub

This is the original VB6 code for the DelButton script.

DelButton LiveCode - Converted Script

O button "DelButton" ® @

1 Private command DelButton_Click T
2 If the Text) of field "Len(Textl" = 0 Then

3 the SetFocus of field "Textl"

4 exit

5 End If

6 If the SelText) of field "Len(Textl" > 1 Then
7 put " into the SelText of field "Textl"

8 the SetFocus of field "Text1"

9

exit
10 EndlIf
11 If the SelStart of field "Textl" = the Text) of field “Len(Textl" Then
12 the SetFocus of field "Textl"
13 exit
14 EndlIf

15 put the SelStart of field "Textl" into SStart

16 put the Text, of field "Left(Textl" the SelStart) of field "Textl" + the Text, of field "Right(Textl" the Text)
17 the SetFocus of field "Textl"

18 put SStart into the SelStart of field "Textl" "
19 end DelButton_Click —
20

21
- — J4 >

E3 Find: .xml Next § Previousff [] Match Case

This screenshot shows the LiveCode version of the DelButton object script. This screenshot was
taken after hitting the TAB key to reformat the code.
This code definitely needs work after the automated conversion process, but the basic structure of

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 23

the code syntax, functions and operators have been re-written for LiveCode. Most of the object
properties will not make sense within the context of a LiveCode application.

The code has been moved from the .FRM file and placed within the DelButton object, as would be
expected of a LiveCode application. But the handler has not be renamed using the on mouseUp()
message to allow for multiple scripts to exist within the same object. As with LiveCode, there could
be multiple messages and multiple scripts handling messages for any particular object.

SCICALC LiveCode Card Script

O card "SCICALC" O @
1 Private command FileHideShow_Click
2 If the Caption of field "FileHideShow" = “Hide Buttons" Then
3 put 2790 into the Height of field "Form1"
4 put “Show Buttons” into the Caption of field "FileHideShow"
5 Else
6 put 4935 into the Height of field "Form1"
7 put "Hide Buttons" into the Caption of field "FileHideShow"
& EndlIf
9 end FileHideShow_Click
10
11 Private command Updatelog
12 the Listl of field "LogForm" the Textl of field “char 1 to -1 of (CalculatorForm"
13 the Listl of field "LogForm” "For X = " + the Text3 of field "CalculatorForm"
14 the Listl of field “LogForm" "> " + the Result of field "CalculatorForm"
15 end Updatelog
16
17
18
19
E3 Find: .xml Next § Previousf¢ [] MatchCase [More.)

Any remaining VB6 code which is not associated with a form object, is placed into the script for the
card itself, just as would be done with a typical LiveCode application.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 24

VB6 Converted .irev Scripts

800 [] VB6_Conversion =)

¥ DEVICES L Date Modified
IE David Simpson’s MBP 17U = Today, 12:57 PM
E iDisk ¥ |] VB6 Converted Scripts Today, 12:56 PM - Folder
,3 Macintosh SSD ¥ @ Cho3 Today, 12:56 PM - Folder
¥ [Types Today, 12:15 PM - Folder
¥ SHARED 6 TypeMod.irev Today, 12:15 PM 4KB BBEdit...ument
I8 1s_buo_2T8 = v @ chos Today, 12:57 PM -- Folder
¥ PLACES ¥ [] TEXTPAD Today, 12:15 PM - Folder
4+ Dropbox @ Modulel.irev Today, 12:15 PM 4 KB BBEdit...ument
Desktop ¥ @ Choé Today, 12:57 PM - Folder
/A Applications ¥ [Spiral Today, 12:15 PM -- Folder
(7] Developer 6 spiral.irev Today, 12:15 PM 4 KB BBEdit...ument
Gl FETTETE ¥ [Spirall Today, 12:15 PM - Folder
&l Pictures @ SPIRAL.irev Today, 12:15 PM 4 KB BBEdit...ument
E Movies ¥ @ Cho7 Today, 12:57 PM - Folder
T ¥ [Image Today, 12:15 PM - Folder
@ image.irev Today, 12:15 PM 4 KB BBEdit...ument JL
¥ SEARCH FOR ¥ [Chos Today, 12:57 PM - Folder
(L) Today ¥ [LVWDemo Today, 12:15 PM -- Folder
(U Yesterday @ LVWDemo.irev Today, 12:15 PM 4 KB BBEdit...ument
() Past Week ¥ @ Cho9 Today, 12:57 PM -- Folder
(3] All Images ¥ [RTFPad Today, 12:15 PM - Folder
All Movies @ Modulel.irev Today, 12:15 PM 4 KB BBEdit...ument
¥ @3 Chlo Today, 12:57 PM - Folder
¥ [MDIPad Today, 12:15 PM - Folder
@ MDIMod.irev Today, 12:15 PM 4 KB BBEdit...ument
¥ @ Chl2 Today, 12:57 PM - Folder
¥ [Image Today, 12:15 PM - Folder
@ IMAGE.irev Today, 12:15 PM 4 KB BBEdit...ument
¥ [Imagel Today, 12:15 PM - Folder
@ IMAGE.irev Today, 12:15 PM 4 KB BBEdit...ument
¥ [Image2 Today, 12:15 PM - Folder %
@ IMAGE.irev Today, 12:15 PM 4 KB BBEdit...ument 3

VB6 .bas files are converted into text files having the .irev extension and stored in a directory
structure matching the original VB6 project.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 25

TypeMod.irev LiveCode Script

(TN &) @ TypeMod.irev !
y "o Last Saved: 4/7/12 12:15:13 PM %=l
@ L/’ iT_ﬂJ 0 Q File Path v : ~/fmpro_migrator/VB6_C...Ch03 /Types/TypeMod.irev \:‘_‘
<4 » o[’ TypeMod.irev =+ (nosymbol selected) =+ Q. v
[m—
<?rev
Attribute VB_Name = "TYPESModule" Hr

--Type Customer

-- Company As String

-- Manager As String

-- Address As String

-- City As String

-- Country As String

-- CustomerSince As Date
-- Balance As Currency
--End Type

-- local Customers As Customer
-- local cust As Customer

on InitData

put "Bottom-Dollar Markets" into the Company of field "cust”

put "Elizabeth Lincoln" into the Manager of field "cust”

put the " of field ""23 Tsawassen Blvd" into the Address of field "cust"
put "Tsawassen" into the City of field "cust"

put "Canada" into the Country of field "cust"

put 18/20/1996 into the CustomerSince of field "cust”

put 3358@ into the Balance of field "cust”

put cust into Customers[1]

put "Consolidated Holdings" into the Company of field "cust”
put "Elizabeth Brown" into the Manager of field "cust” "
put "Berkeley Gardens" into the Address of field "cust"

put "London" into the City of field "cust”

put "UK" into the Country of field "cust”

put 6/12/1992 into the CustomerSince of field "cust"

put 45880 into the Balance of field "cust”

put cust into Customers[2]

put "Hungry Coyote Import Store" into the Company of field "cust”
put "Yoshi Latimer"” into the Manager of field "cust"

put "City Center Plaza" into the Address of field "cust”

put "Elgin” into the City of field "cust”

put "USA" into the Country of field "cust”

put 1/1/199@ into the CustomerSince of field "cust"”

put -1280@ into the Balance of field "cust”

put cust into Customers[3]

VB6 Supported Form Objects

The following object types are converted from VB6 forms:

PictureBox
ImageBox
Label
TextBox

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 26

Frame
CommandButton
CheckBox
OptionButton - (grouped if within a Frame)
ComboBox

ListBox
HorizontalScrollbar
VerticalScrollbar
DriveListBox
DirectoryListBox
FileListBox

Slider

TabDlg

VB6 Unsupported Form Objects

Timer

Shape

Line

Data

OLE

ActiveX Controls

Additional Conversion Notes

1) Note: Objects having their coordinates set as negative numbers will be reset to a coordinate
value of 0.

2) All VB6 forms must use the default measurement of Twips, as these are converted into Pixel
coordinates prior to conversion. Any forms which use any other unit of measurement should be
updated in Visual Basic 6 to use Twips prior to conversion.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 27

	FmPro Migrator - BASIC to LiveCode Conversion Procedure
	Table of Contents
	BASIC to LiveCode Conversion
	Introduction - BASIC to LiveCode Conversion
	About the BASIC to LiveCode Conversion Process
	BASIC Code Processing Features
	BASIC Omitted Functions and Keywords
	Unsupported Features Requiring Manual Conversion

	Step 1 - Create FmPro Migrator Project File
	Open FmPro Migrator
	Click FileMaker Tab
	Select Create Project File... Menu
	Click GUI Tab of Migration Process Window

	Step 2 - Select Conversion Options & Convert BASIC Files
	Click BASIC to LiveCode Button
	BASIC to LiveCode Options
	Conversion Results
	.irev Converted Files
	BASIC Converted.rev Stack with Converted Card Scripts

	VB6 to LiveCode Conversion
	VB6 to LiveCode - Form and Script Conversion
	Open BASIC to LiveCode Conversion Window
	Saving the VB6ToLiveCode Conversion Stack
	Using The VB6ToLiveCode Conversion Stack
	VB6 Conversion Results
	Locked Stack Error
	Converted Form: SCICALC
	DelButton - Original VB6 Code
	DelButton LiveCode - Converted Script
	SCICALC LiveCode Card Script
	VB6 Converted .irev Scripts
	TypeMod.irev LiveCode Script
	VB6 Supported Form Objects
	VB6 Unsupported Form Objects
	Additional Conversion Notes

